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TECHNICALNOTE4349

HEAT TRANSFER AND THERMAL STRESSES

IN SANLWICIIPANEIS

By Robert T. Swarm

Calculated maximum temperature clifferences between faces and cal-
culated thermal stresses are presented for sandwich panels with a pre-
scribed linesr rate of temperature rise at one face and with the other
face insulated. Effects of conduction and radiation are included. Msxi-
mum temperature differences between top sad bottom faces are considerably
less when both radiation and conduction sre considered than when radia-
tion is neglected. From the calculated data an equation is derived that
relates the maximum temperate difference to the maximum temperature
difference when conduction only is considered. An approx~te method for
including effects of radiation in calculations of temperature difference
is presented.

INTRODUCTION

One of the structural configurations being used for supersonic air-
craft utilizes a sandwich panel for the load-csn’ying skin. The state
of stress in such panels can be appreciably altered by thermal stresses
resulting from aerocQmsmic heating. In order to calculate thermal
stresses, the temperature distribution through the panel must be lmown.

For solid cores, only heat transfer by conduction need be considered
and the temperature distribution can be readily calculated by an appro-
priate idealization of the sandwich panel into a one-dimensiond heat-
conduction problem. If, however, air spaces sre present in the core,
an appreciable smount of heat can be transferred by radiation, with the
result that the temperature ~adients and the resulting therml stresses
are reduced. The heat trsmsferred by radiation can be included in the
one-dimensional heat-bslance equation, but because heat transfer by radia-
tion is proportional to the fourth power of the absolute temperature, the
result is a nonlinear differential equation which is difficult to solve.

In the present paper equations are derived for calculating the tem-
perature distribution in any ssndwich panel in which conduction is pre-
dominant. Results of en investigation to determine the effect of
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including heat transfer by radiation in an analysis of the temperature
distribution in honeycmab sandwich panels me also presented. The effect *
of radiation is evaluated by compsring the msximum temperature difference
obtained between the panel faces when radiation is considered with that
obtained when radiation is neglected, all other factors being unchanged.
These max- temperature differences sre then empiri.cellyrelated.

Most of the calculated results were obtained with a Reeves Electronic
Anslog Computer. However, an approximate analytical method for calculating
temperature when both radiation and conduction must be considered is pre-
sented in an appendix. Limited experimental evidence of the validity of
the theory is given.

SYMBOIS

A area

AA solidity of core

B temperature-rise rate of core

c! arbitrary co’nstant

c heat capacity of material

D arbitrary constant

E modulus of elasticity

Fn,m overall configuration

F’n,m configuration factor

G(T) arbitrary function of

g(s) Laplace transform of

h core height

K diffusivity, k/cp

k thermal

L Laplace

L-l inverse

conductivity

transform

factor

time

G(T)

Laplace transform



perimeter of cells of core

rate of radiant heat exchange between one
other points

rate of heat exchange between two points

width of square cells in honeyconb panels

absolute temperate

3

point and all

absolute temperature less initial temperature

nondtiensional temperature

difference between the
panel

thickness

core density

distance from unheated

coefficient of thermal

roots of the equation

constant

emissivity; ,strain

temperatures of the faces of the

face of panel

expsnsion

Laplace transform of T‘

d- variable of integration

dunmy varisble of integration

density of material

Stefan-Boltzmann constant; stress

time

nondimensional ttie, 9KTfh2
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Stiscrlpts:

1>2,3,4,5

a,b,c,dje

c

eff

F

i

m,n

max

o

function for configuration factors

stations as identified in figure 1

temperatures defined in appendix B

conduction only

effective

unheated face

pcsitive integer

integers between 1 and ~

maximum

initial condition

..
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The problem to be considered is the transfer of heat through a
sandwich panel, one face of which experiences a prescribed temperature
history which is a function of time only. For solid-core sandwich panels,
the only mode of heat transfer which must be considered is conduction.
If the panel is suitably idealized and suitable boundary conditions are
selected, am exact solution can be obtained by employing the wel.1.-lamwn
one-dimensional partial differential equation of heat balance which
governs the transfer of heat by conduction. When air spaces extst in
the core, significant smounts of heat msybe transferredby radiation
from the hot face to the cooler face and to the core elements. When
the heat transferredby radiation is incorporated into the differential
equation for heat balance, the result is a nonlinear psrtial differentid.
equation with variable coefficients, the -act solution of which is dif-
ficult, if not impossible. The problem canbe solvedby resorting to an
approximate analysis which results in a set of nonlinear ordinsry dif-
ferential equations suitable for solution on an analog computer.

The following assumptions were made in this snal.ysis:

1. Thermal properties are independent of temperature.
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Convective heat

The temperature

order to obtain

5

transfer is negligible.

of any plane parallel to the faces is uniform.

a solution which does not involve unnecessary
complications, the actual core of the sandwich is idealized as follows.
It is assumed-that the temperatures of the faces of the sandwich are
respectively uniform; therefore, there will be no transfer of heat by
conduction in these faces. Because of this, the face material canbe
considered as concentrated heat capacitors located at the ends of the
core elements. It is also assumed that there is no joint resistance
between the faces and the core elements, and the thicbess of the material
used to attach the faces to the core is converted on the basis of heat
capacitance into an equivalent thichess of face material which is then
included

The
based on

where

k

Ah

Cp

K

in the concentrated heat capacitors.

core is considered as a slab wtth effective thermal properties
the solidity of the core:

~ff=kAA

(cP)eff =cpAA

Keff ‘&

thermal conductivity of core

solidity of core

product of heat

diffusivity

capacity and density

Conduction

For honeycomb panels having i.nternslsurfaces of low emissivity,
or for psnels with solid cores (e.g., foam core or laminated plastic
core), effects of internal radiation may be negligible. The problem of
heat transfer in these psnels reduces to one-dimensional heat conduction
in the core, governedby the differential equation



6 NACA TN 4349

~ aT(x,T) = b2T(X,T) (1)
K%

ax2

The initial temperature of the sandwich is

T(x,O) = To

The assumed boundary conditions are

where

T

To

tF

T

x

h

G(T)

T(h,T) = G(T]

,—,

assumed to be uniform:

(2a)

‘F &l!(O,T)~(O,T) _
(2C)

ax KAA aT

sbsolute temperature

initial absolute temperature

ideslized thickness of the unheated face

time

distance from the unheated face

core height

prescribed function of

Equation (2b) follows from
resistance between the core and

time

the assumption that there is no thermal
the face, and therefore the end of the

core is at the prescribed temperature of the face.

In order to simplify this investigation, the unheated face was
assumed to be insulated against heat loss. Equation (2c) is derived in
appendix A from this assumption, plus the conditions that the face te.rn-
perature is uniform sad that there is no joint resistance between the
core and the face. It is also assumed that the face and core are made
of the ssme material.. In order to extend results based on this equa-
tion to sandwich panels in which faces and core are made of tifferent
materials, sn effective face thickness should be used. This effective

—

—

—
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face thicbess is equal to the
the ratio of cp for the face

idealized face thickness
material to cp for the

‘7

multiplied by
core material.

The solution of these equations for
is derived in appendix Aby means of the

the temperature at any point
Laplace transformation ‘=d is

where pi sre the roots of the equation

A partial listing of the roots of this eqution is given in tsble I.
A more tiensive table is presented in reference 1.

For the temperate of the unheated face x = O, equation (3)
reduces to

K~_2

J

T -*{T-A)
Cos p G(?Je dl

sin2P+l 0-
2$

(3)

(4)

(5)

If G(T) is a linear function of time, BT, the following ~ression
is obtainedby substituting the transform of BT into the transformed
equation (A8) before taking the inverse transformation:

.
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The series in
that wouldbe
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this equation is more rapidly convergent than the one
obtained by stistituting G(T) = BT in equation (5).

8

Conduction and Radiation

If radiant heat transmission is to be considered, the heat balance
must include net radiant heat exchange as well as conduction. Net radi-
ant heat exc~e between two isothermal surfaces Al and A2 (as
viewed from Al) cm be computed from the expression

(7)

.where:

a Stefan-Boltzmann constant

E emissivity

The factor F~,2 is a function of the geometric relation between sur-

faces Al and A2. This geometric relation is referred to as the con- - . -
figuration factor and is defined as the fraction of the total radiant”
flux leaving Al that is incident on A2. (See ref. 2.) For the core,
the area in the above relation can be expressed as P dx, where P is

b

the perimeter of the core at a cross secttin parallel to the faces;
therefore equations (1) and (7) canbe conibinedin the following form to
include the effects of radiation:

iLE?L!kl=
K bT

The symibols CPi

2&#iIl---I+(X).)- ~h~(x,,)T4(,,T) d, -

%(X) T4(h,T) -

1

~(x) T4(0,T)

denote configuration factors. The terms

(8)

in brackets

represent the net radiant heat exchange at any point; the
gives the heat emitted frmn the point, the second term is

first term
the heat flux

from all other points of the core to the point in question, and the last
two terms are the heat flux from the faces to the point.

The initial temperature (eq. (2a)) and the boundary condition at .

the heated face (eq. (2b)) are unchanged,hut the boundary condition at
the unheated face becomes: P
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(9)

where qi again denotes the configuration factors end the terms in

brackets represent the net radiant heat flux at the umheated face.

Since no exact methods of solution for equations of this type are
known, a finite-difference procedure will be used. This is done by
taking three stations in the core and one station at each face. (See
fig. 1.) Now equation (8) and its boundsry conditions csmbe expanded
by finite differences to a system of four ordinary differential equa-
tions. h order to expand the radiation terms of equation (8) into
finite-difference form, let Fn,m be the fraction of radiant flux
leaving all faces at station n which is incident on all faces at sta-
tion m, multipliedby the area of all the faces at station n, based on
unit srea of the face plates. @ansion of the radiation terms in equa-
tions (8) and (9) into finite differences then gives for each element n
a term

Qn = ‘ (4-’+-UC~ Fn,m Tn
m=l

(lo)

Therefore, in terms of finite differences, equation (8) and its boundary
conditions become

T1
u

=To+G~

E!3=T2-m3+T4
d7 - s% ‘3@l~4 - ‘=’4)

(1.la)

(llb)

(nc)
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dT4
—=T3
d~

- 3T4 + 2T=j - *S F4,.(T,4 - %!+)
Irl-

(
~=U.2T4-

- ~-s-%,mp,’ - %’)%) 3t, 3k ~ M=ld~ 3tF

where

~ _ 9KT
~2

and the initial conditions are

(he)

Equations of this type are readily solved on an analog computer equipped
to generate fourth powers of the dependent vsriable.

The solution of equations (11) canbe made considsr~ly more gen-
eral by using a nondimensional temperature parsmeter Tn which is
defined by the following relation:

(12)

where 7 is a constant which maybe selected so that the problem falls
in the desired computer range of temperature.

Substituting this expression for Tn into equations (11) and

dividing by ()
l/3

72MJ!3 gives

+ (lsa)
.

.
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dT2
—= ~~-3~2+~3-
d?

73 *F2,m(~24 - Z$
=

53
—= T2 -m3+T4-
d~

732 F3,m(q -d)
m.1

a5?4
—= T3 -3T4+2T5-Y3 &F4,m(~44 - =m4) (U@

Dl=l

2dT ( )

—=l?L_#S4-2T5 - ~73AF~,m(T~ - %4) (13e)
m=l

with the initial.condition

To
(~n)t~ ‘To =

()

~ 3k AA 1/3

aeh

An approxhate procedme for calculating the temperature of the unheated
face is presented in appendix B.

Therm31 Stresses

Temperature differences between faces of sandwich panels cause

11

(13C)

unequal expansion of the faces and result in the-l stresses. An indi-
cation of the magnitude of these stresses can readily be obtained if the
folloying assumptions are made:

(1) Materialpropertiesa reindependato ftemperatwe.

(2) The

(3) me

(4) The

core is rigid in shear.

faces remain plane and all edges are free to expand.

core takes no load.

——— —
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The stress-strain relations are

ffl
-—+uT1

‘–El

%F=—+*
%

where

E strain

c1 stress in heated face

aF stress in unheated face

E modulus of elasticity

a coefficient of thermal expsmsion

TF temperature of the unheated.face, T5 or T(O,T)

For equilibrium,

Therefore, the stresses in

t~ff~ + tFuF =

the faces are

EUAT 1ul=.—

tl
l+—

tF

0

.

.

(14)

(16)

where:

AT= T1-T)?
-.

.—

.
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RESUEI’SAND DISCUSSION

Solutions were obtained for all conibinations
parameters:

of the following

h, in. . . . . . . . . . . . . . . . . . . . . . . . 0.2, 0.3, 0.4, 0.5
AA. . . . . . . . . . . . . . . . . . . . . . 0.02, 0.025, 0.03, 0.04
_bFjin. . . . . . . . . . . . . . . . . . . . 0.01, 0.02, 0.03, 0.05

B,%/sec . . . . . . . . . . . . . . . . . . . . . . . 5,10,20,50
c:;B$/(ft3)(%) . . . . . . . . . . . . . . . . . . . . . . . . .50
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kj (Btu)(ft)/(hr)(~)(ft2) . . . . . . . . . . . . . . . . . . . . 1~~

In all cases the face t~cbesses listed here were modified in the cal-
culations to include 0.0Q2 inch of face materisl aa the thermal equiv-
alent of the braze or other material used to fasten the core to the face.
For cases in which radiation is considered, the core is assumed to con-
sist of l/4-inch-square cells with emissivity equal to 0.8. Configura-
tion factors used in the calculations are given in table II.

Typical results are shown in figure 2. The curve identified as ~
A

is the prescribed temperature of the heated face, which in this case
experiences a temperature rise B of 10° R per second. The curve

. marked ~,c is the temperature response of the unheated face calculated

from equation (~), which applies when radiation is neglected. A com-
parison of this curve with results calculated numerically andby analog
computation from equations (13) without the radiation terms revealed
differences too small to be shown on this plot. The curve identified
as ~ is the temperature of the umheated face calculated from

equations (13).

As wouldbe expected, the temperature difference between the heated
face and the unheated face is more when radiation is neglected. The t~-
perature difference is essentially constant at its maxtium value after
1X seconds when radiation is neglected. (From eq. (6) it is obvious
that the maximum occurs as time approaches infinity.)

The maximum temperature difference with conduction only can be cal-
culated by subtracting equation (6) from equation (2b). As time becomes
large, this difference beccmes

(17)
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The msximum temperature difference with radiation and conduction was cal-
culated on em analog cmputer from equation (11). When these maximum
temperature differences were plotted with

(Nms’x)c asabscissa and -
ATmu as ordinate for each case Msted,at the beginning of this section,
all the points lay within the envelope shown in figure 3.

Since all the points lie in a narrow band, regardless of the values
‘ofthe parameters, it appears that the effect of radiation depends chiefly
on the ma~itude of the temperature difference which would be obtained
by considering conduction only.

The dashed line in figure 3 represents the data in the intenal

m< (~=)c <320””

with a maximm error of about 10 percent.

An approximate equation for this line is

r -’3’
AT- = Z?l.g (Mw)c (18) .

If equation (17) is substituted for
(N-)c

in equation (18), the

following expression is obtained for the maximum temperature difference
.

when both radiation and conduction are considered:

AT- 11(B ‘F=21.9h -—
Kh~+

Calculated maximum
sionless form in figure
ference is plotted as a
values of dimensionless

)$ - 135 p< (Mnax)c.3j+ (u)

Dimensionless Analysis

temperature differences are presented in dimen-
4. The maximum dimensionless temperature dif-
function of the ratio h~/tF fOr seVeral
temperature-rise rate.’ Each plot is for constant

initial dimensionless tempe~ature, since

70 =

Also, each plot is for a fixed
the width of the square cell.

(20)
.

value of the ratio h/S, where S is —

.J
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On the logarithmic scsle used, the curve of maxhnum dimensionless
temperature difference varies linesrly with the ratio hAA/tF, and the

slopes generally decrease as the temperature-rise rate increases. How-
ever, it was not possible to derive a mathematical relation between the
slopes of the temperature-difference curves and the temperature-rise
rates which would lead to a simpler ~irical approxhskion to the maxi-
mum temperature difference than that given by equation (19). Figure 4
can be used to determine maximum temperature differences with greater
accuracy than is possible fram equation (19).

Correlation of Theory md Experiment

The theory from which the results given in the present paper were
obtained assumes that no heat is lost from the unheated face of the
sandtich. There is a scarcity of data on sandwich panels tested under
conditions which match the theoretical assumptions. However, in a test
made in the Langley Structures research laboratory a U.@t-weight steel
honeyconibsandwich panel ~erienced a temperature-rise rate of
19.2° R per second at the heated face and experienced a radiant heat
loss at the unheated face of the sandwich. Heat was trsmferred from
the unheated face of the sandwichby radiation across an air gap to a
steel backing plate. The sandwich panel properties were tF = 0.005 inch,

w= 7.21b/ft3, and h=O.3 inch. Test results sre shown by the data
points in figure 5. The prescribed temperature of the heated face is
shown by the curve identified as T1. ~ order to compute the tempera-

ture histories of the sandwich faces, it was necessary to modify the
analysis to account for the radiant heat loss at the unheated face. It
was therefore assumed that the unheated face of the sandtich panel radi-
ated to a plate which remained at room temperature. The aissivities
of the backing plate and the umheated face of the sandwich were assumed
to be 0.6 and the internal emissivity of the sandwich was assumed to be
0.8. The calculated txagperaturesof the unheated face of the sandtich
are shown by the solid line identified as !& * are in excellent
agreement with the test results for the first X seconds. After that
the, the temperature of the backing plate used in the test began to
rise and thus invalidated the theoretical assumption of constant tem-
perature and permitted no further basis for comparison. In order to
show the effect of radiation, a curve of calculated temperature is
included for the case in which radiation is neglected.

Thermal Stresses

In order to give more meaning to the magnitudes of the temperature
differences between the faces of a sandwich panel, a simplified elementary
stress analysis was made. If it is assumed t,@.tthe panel remains flat,
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that the core takes no load, and that there is no external restraint to
expansion, the thermal stresses for equal face thicknesses are, from

—

equations (16),
.

EaAT
a=—

2
(21)

with the heated face in compression and the unheated face in tension.
Of course, the analysis overestimates the thermal stresses which actually
exist; nevertheless, it provides a convenient means of evaluating the
effect of internal radiation. For steel the product Eu is about ~
and thermal stresses are

a =fi50AT

Therefore, a plot with maximum temperature

(22)

difference as the ordinate can
be readily co~verted into a plot fith maximum thermal stress as the ordi-
nate. If the temperature differences in figure 3 are converted into
thermal stresses, the lowest stress obtained is 15,000 psi. This result
indicates that large thermal stresses are to be expected when sandwich
panels are heated. It appears from equation (19) that high core density,

+

thin unheated faces, and thin panels will be necessary in order to prevent
these stresses from becting prohibitive. .

.

However, if the ratio of face thichesses %1/tF is increased,
compressive stresses diminish and tensile stresses increase. Cmnpres-
sive stresses can be reduced by any desired amount without increasing
tensile stresses by more than a factor of 2. This effect will nowbe
considered for a specific ~smple. Take a steel honeycomb panel with
h = 0.3 inch, B = 20° F/see, and w = 20 lb/ft3. Assume that the panel
is to be used in an application requiring a total face thiclmess of
0.1 inch; that is, tl + tF = 0.1. The temperature information neces-

.

sary for evaluation of the thermal stresses in this example can be calc-
ulated from equation (19). It should be noted that, since the temper-
ature of the heated face is prescribed, its thickness does not affect
the temperature difference. The face thicknesses given here are the
actusl face thiclmesses and do not include a modification to account
for braze material. The stresses sxe givenby the equations

(23)>
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Thermal stresses calculated from these equations are plotted against
unheated-face thiclmess in figure 6. H the two faces have the same
thickness, the thermal stress in each face is ~,000 psi. Decreasing
the unheated-face thickness from O.05 inch to 0.036 inch and increasing
the heated-face thickness to O.O@+ inch reduces the stresses in the
heated face from 75,000 psi to ~,000 psi. Stresses in the unheated
face increase from 75,000 to 80,~0 psi. hrther reduction of the
unheated-face thickness will reduce the-l stresses in both faces.

CONCLUDING R.EMAFW

Calculations of temperature distributions in sandtich panels, even
when internal radiation is present, are not difficult if analog computing
equipment is available. If internal radiation is present, the accuracy
of an analysis of maximum temperature difference between the top and
bottom faces of the panel,”based on conduction only, decreases as the
temperature difference increases.

If the temperature-rise rate of the heated face of the sandwich is
linear, a simple empirical relation exists between the maximum tempera-

4 ture difference between the top and bottom faces of the panel and the
maximum temperature difference calculated when only conduction is con-
sidered. Approximate temperature differences canbe calculatedly con-.
sidering the separate effects of radiation and conduction.

Even with relatively moderate heating, large temperature gradients
exist in sandwich panels and cause large thermal stresses. For a given
total face thickness, however, the magnitude of thermal stresses can be
materially reducedby decreasing the unheated-face thickness while
increasing the heated-face thickness by an equal amount.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., June 9, 1958.

.
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APPENDIX A

CONDUCTION OF HEAT IN SANDWICH PANEIS

.

.

The differential equation for the l$near conduction of heat is

Lw%d. ad
K&

(Al)
ax2

The initial condition is T(x,O) = To. The temperature of the heated

face, x = h, is prescribed as:

T(h,T) =G(T)

The rate at which heat leaves the core and

(A2)

enters the unheated face is

q= kAAF (A3)

Inasmuch as it is assumed that the external surface of the unheated face
is insulated, the temperature-rise rate of this face is proportional to
the rate at which heat leaves the core:

im(o,-r),q= C@F .

Equating these expressions for

w
ax

—
dT

q gives

_ ‘F ~(O,T)
KAA 8T .

(A4)

(A5)

These equations are readily solvedby means of the Laplace transforma-
tion. Let

T’(X,T) =T(x,T) - TO
.

,-
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The transformed equations are

d20(x,s) ~ ~(x,~) “=~

-2 K

E)(h,s) = g(s)

6tFNOM _ e(o,6)
ax KM

where

‘(X}S)=‘NXJTI
g(s) = L~(T)]

The solution of equation (A6a) is

e(x,6)., s,ti(~+ +hcm+j+

(A6a)

(A6b)

(A6c)

(A7)

where c and D are constants tobe determined from equations (A6b)
and (A6c). When C and D are evaluated, the transformed equation is

e(x;6)=g(6) Msi+x)+Cosh(tx)
:(9+) +-(p)

(M)

An inverse transform of the equation can be expressed hmediately as
a convolution of the arbitrary heating function wtth the other terms
of the equation:

.

.
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T’(x, T) = 1‘FE‘ifi(fix)+‘“’’(fix)G(T) -EL-l m 1 (x <h) (A9) -

:6’’*(E’) + c“sh(ch)

where L-l indicates the
brackets is single valued
of the inversion integral

inverse transform.
with simple poles,
it is found to be

The expression
and by a formal

where

Therefore,

within the
application

A!?&.+)
T(x,T) = To + ~ m p sin p(l - x) T @A)e h2

E
J

dA (X < h)
h2i=l &+l O

(Ale)

*

.

(AU)

The present paper 18 concerned with a linesr temperature-rise rate at the
heated face and solutions canbe obtainedby substituting G(T) =BT into
equation (All). However, by substituting the linear temperature-rise rate
into equation (A8) and again finding am inverse transformby a formal
application of the inversion integral, the following equation is obtained:

r

T(x,T) =TO+B T+K 3(X - h) + $# - h2) +
AA

(L(2)

The series in

ante of %4

this equation is rapidly convergent because of the appe~-
in the denominator.

.
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APPENDIX B

21

ANALYTICAL APPRCDUMATION WITH FUUGITION AND CONDUCTION

*

.

A siqle procedure is presented in this appendix for analytically
approximateing the temperature of the unheated face of a sandwich panel
in which internal radiation is present. The following steps ~e involved:

(a) Calculate the temperature distribution, considering conduction
only.

(b) Calculate the radiant heat transmission to the unheated face,
assuming that the temperature distribution is that calculated in step (a).
Convert this heat input into a temperature rise.

(c) Correct the temperature of the unheated face for the radiant
heat input.

(d) Assume that the actual conduction to the unheated face is pro-
portional to the difference between the temperature of the heated face
and the temperature of the unheated face as calculated in step (c).
Calculate the temperature rise of the unheated face causedby this heat
input.

(e) Add the taperature rises calculated in steps (b) and (d) to
obtain the final approximation to the temperature of the unheated face
of the psnel.

Corresponding to each of these steps me temperatures which will be
designated as Ta} ~, Tc, Td, and Te, respectively. The tempera-
tures Ta are those calculatedly considering conduction only (eq. (All)).
The radiant heat input to the unheated face (step (b)) canbe calculated
by integrating equation (10), using the temperatures Ta. This heat input
csn be converted to a temperature rise by dividing the integral of heat
input by the heat capacity of the unheated face. This temperature rise
is q.

The temperature of the unheated face is now (step (c)):

Tc=Ta+~

From stbp (d), the heat conducted to the unheated face is

q [
=&(Tl)a - (%)a - (TF)b]
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smd the temperature rise caused by conduction satisfies the relation

+&~=CptF —
dr

or

(~)d = &
J[ 1

‘ (T~)a - (!@)CdA
o

The temperature of the unheated face
due to conduction and radiation:

Te ‘%

Figure 7 compares results calculated
tion (13) with results cal.culatedby

is the sum of the temperature rises

+ Td

on the analog computer from equa-
the above procedure. The dashed

line is the result obtained on the analog computer. The dash-dot line
is (T@)c, which has a correction for the effect of radiation but does

not consider smy interaction between radiation and conduction. The
solid line is (lF)e* The,close agreement between the solid and dashed
lines indicate that the approximate smd.ysis is adequate up to the time
at which the msximum temperature difference is reached.

.

.
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TABLE I.- TSE FIRST FIWE ROOTS OF THE EQUATION 13itan j3i= ~

hAA

tF

0.01
.06
.1
.2
.3
.4
●5

1.0

0.0998
.2425
.3111
.4328
.3218
.5932
.6533
.8603

3.1448
3.1606
3.1731
3.2039
3.2341
3.2636
3.2923
3.&256

6.2848
6.2927
6.2991
6.3148
6.3305
6.3461
6.3616
6.4373

9.42X
9,4311
9.4354
;.;M&

9:4670
9.4775
9.5293

$5

1.2.5672
12.5711
12,5743
u. 5823
1.2.5902
12.5981
12.6060
12.6453

TABLE II.- OVERALL CONFIGURATION FACTORS

f I i 1 I f
Factor h- = 0.8 h- = 1.2 h
(a) - = 1.6 h

s
- = 2.0

s s s

L
F2,1

‘2,3

‘2,4

‘2,5

F3,1

F5,1

0.407

.164

.C92

.1.28

.211

.252

0.527

.300

.133

.100

.220

.152

0.620

.400

.145

.000

.200

.100

aEquivalent factors are:

F2,1 = F5,4 = ‘4,5

F2,3 = F3,2 = F3,4 ‘=”F4,3

‘2,4 = F4,z

F2,5 = F5,2 = ‘4,1

F3,1 = F3,5 = F5,3

.

.

.

*

0.676

.495

●1.25

,Ogo

.177

.040

b

—

.
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STATION i
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STATION 3
0

STATION 4

0

STATION 5

T
h

—

Figure 1.- Iacation of stations used in finite-difference analysis.
.
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Figure 2.- Typical calculated results. h = 0.5 inch; tF = 0.03 inch;
w= 13 lb/ft3; B = 10° R per second.
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Figure 3.- Maximumtemperature difference tith radiation and conduction
as a function of maxhnum temperature difference with conduction only.’
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ATmax
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Figure 4.- Maximum

(a) ~ = 0.8;

dimensionlesss

h AA
t~

o

-&m
= 0.215.

()x

temperature difference as a function of -
hAh
~a .
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h–= 1.2;
s k ; ~~3 = 0“247”

()uch

Figure k.- Continued..
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Figure 4.- Continued.
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ATM

L)
kAA ~
nii-
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(d) :=2.0; ‘o

k AA 1~3 = 0“292-

()x

Figure 4.- Concluded.
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Figure 6.- Maximumthermal stress as a function of unheated-face thick-
ness for constant totsd.face thickness. tl + tF = 0.1 inch;

h = 0.3 inch; w = 20 lb/ft3; B = 200 R per second.
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Figure 7.- Results of approximate analytical procedure.
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